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1 The Parity of a Permutation

Let n ≥ 2 be an integer. We have seen that any σ ∈ Sn can be written as a product of
transpositions, that is

σ = τ1τ2 · · · τm, (1)

where each τi is a transposition (2-cycle). Although such an expression is never unique,
there is still an important invariant that can be extracted from (1), namely the parity of σ.
Specifically, we will say that σ is even if there is an expression of the form (1) with m even,
and that σ is odd if otherwise. Note that if σ is odd, then (1) holds only when m is odd.
However, the converse is not immediately clear. That is, it is not a priori evident that a
given permutation can’t be expressed as both an even and an odd number of transpositions.

Although it is true that this situation is, indeed, impossible, there is no simple, direct proof
that this is the case. The easiest proofs involve an auxiliary quantity known as the sign of
a permutation. The sign is uniquely determined for any given permutation by construction,
and is easily related to the parity. This thereby shows that the latter is uniquely determined
as well. The proof that we give below follows this general outline and is particularly straight-
forward, given that the reader has an elementary knowledge of linear algebra. In particular,
we assume familiarity with matrix multiplication and properties of the determinant.

We begin by letting e1, e2, . . . , en ∈ Rn denote the standard basis vectors, which are the
columns of the n× n identity matrix:

I = (e1 e2 · · · en).

For σ ∈ Sn, we define
π(σ) = (eσ(1) eσ(2) · · · eσ(n)).

Thus π(σ) is the matrix whose ith column is the σ(i)th column of the identity matrix.
Another way of saying this is that

π(σ)ei = eσ(i) (2)

for all i. Because (2) is valid for all permutations and indices, if τ ∈ Sn and we multiply on
the left by π(τ), we obtain

(π(τ)π(σ))ei = π(τ)(π(σ)ei) = π(τ)eσ(i) = eτσ(i) = π(τσ)ei

for all i, which implies that
π(τ)π(σ) = π(τσ). (3)
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Since π(Id) = I, taking τ = σ−1 in (3) we find that

π(σ)π(σ−1) = π(Id) = I.

Hence1 π(σ) ∈ GLn(R). This, together with (3), shows that we therefore have a homomor-
phism π : Sn → GLn(R). The definition of π implies that σ ∈ kerπ if and only if σ(i) = i
for all i, from which we conclude that π is injective.

The essential information we need from π(σ) is just its determinant. Let

δ = det ◦π.

The multiplicativity of the determinant implies that δ is a homomorphism from Sn to R×.
Because Sn is finite and the only elements of R× of finite order are ±1, we must have
δ(Sn) ⊂ {±1}. This can also be observed by noting that for any σ ∈ Sn, δ(σ) and δ(σ−1)
are integers satisfying δ(σ)δ(σ−1) = δ(σσ−1) = 1.

Lemma 1. The homomorphism δ : Sn → {±1} is surjective: δ(τ) = −1 for every transpo-
sition τ .

Proof. Let τ = (ij) be a transposition. Then I can be obtained from π(τ) by interchanging
columns i and j. Because interchanging a pair of columns negates the determinant,

δ(τ) = det(π(τ)) = − det(I) = −1.

For σ ∈ Sn the quantity δ(σ) is called the sign of σ. It is related to the parity of σ through
the following result.

Lemma 2. Let σ ∈ Sn and suppose that σ can be written as the product of m transpositions.

1. δ(σ) = (−1)m.

2. δ(σ) = 1 if and only if σ is even.

3. δ(σ) = −1 if and only if σ is odd.

Proof. Write σ = τ1τ2 · · · τm, with each τi a transposition. Then by Lemma 1,

δ(σ) = δ(τ1)δ(τ2) · · · δ(τm) = (−1)m.

This proves the first assertion.

By definition, if σ is even, we can take m to be even, and hence δ(σ) = (−1)m = 1.
Conversely, if δ(σ) = 1 and σ is written as the product of m transpositions, then (−1)m = 1,
so that m, and hence σ, is even. This gives us the second assertion.

Finally, recall that we defined “odd” to mean “not even,” and that the only values of δ
are ±1. Therefore the last assertion is is simply the contrapositive of the second.

1Here we are using the fact that for square matrices the existence of one-sided and two-sided inverses is equivalent.
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Let An denote the set of all even permutations in Sn, and let Bn be the set of all σ ∈ Sn
that can be written as an odd number of transpositions. As we have already observed,
Sn \An ⊂ Bn, and our goal has been to show that this containment is not proper. We have
now succeeded.

Theorem 1. Sn \ An = Bn.

Proof. It suffices to show that An ∩ Bn = ∅. By the first part of Lemma 2, An = δ−1({1}),
while Bn = δ−1({−1}). Thus

An ∩Bn = δ−1({1}) ∩ δ−1({−1}) = δ−1({1} ∩ {−1}) = δ−1(∅) = ∅.

We reiterate that what we have proven is that it is impossible for a permutation to be
written both as a product of an even number of transpositions and as a product of an
odd number of transpositions. As a consequence of results in the following section, this is
equivalent to the apparently simpler statement that the single transposition (12) cannot be
expressed as an even number of transpositions. It’s somewhat remarkable how much work
was invested in proving something so deceptively simple!

2 The Alternating Group

Because An is the kernel of δ, An is a normal subgroup of Sn, and the First Isomorphism
Theorem implies that

[Sn : An] = 2. (4)

An is called the alternating group. An important feature of the alternating group is that,
unless n = 4, it is a simple group. A group G is said to be simple if it has no nontrivial
proper normal subgroups. For example, Lagrange’s Theorem implies that every group of
prime order is simple. But this is a somewhat uninteresting result: a group of prime order
doesn’t have any nontrivial proper subgroups. The alternating group, on the other hand,
has a multitude of subgroups, and so furnishes a more satisfying example of a simple group.

A2 is simple because it’s the trivial group. We have actually already proven that A3

is simple, since |A3| = 3 is prime. The subgroup K = {Id, (12)(34), (13)(24), (14)(23)},
which is isomorphic to the Klein 4-group, is normal in S4. Since K < A4, this proves A4

fails to be simple. The proof that An is simple for n ≥ 5 is a bit more involved, but is
purely computational. It involves nothing more than careful manipulations of permutations,
3-cycles in particular.

We require three preparatory lemmas.

Lemma 3. An is generated by 3-cycles.

Proof. First notice that if i, j, k are distinct, then

(ijk) = (ik)(ij) ∈ An,
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so that An contains every 3-cycle. So it suffices to show that every product τ1τ2 of a pair of
transpositions is a product of 3-cycles. If τ1 and τ2 are not disjoint, the computation above
shows that their product is a 3-cycle. On the other hand, if τ1 = (ij), τ2 = (rs) with i, j, r, s
distinct, then

τ1τ2 = (ij)(ir)(ri)(rs) = (jir)(irs).

This completes the proof.

Lemma 4. If n ≥ 5, then all 3-cycles are conjugate in An.

Proof. Because of the identity

σ(i1 i2 · · · ir)σ−1 = (σ(i1)σ(i2) · · ·σ(ir)), (5)

all cycles of any given length are conjugate in Sn. We must show that when r = 3, we can
always take σ to be even. So let (ijk) and (rst) be 3-cycles, and choose σ ∈ Sn so that
σ(ijk)σ−1 = (rst). If σ is even there’s nothing to prove, so suppose σ is odd. Because n ≥ 5,
we can find a, b ∈ {1, 2, . . . , n} so that a, b, i, jk are all distinct. Then (ab) commutes with
(ijk), σ(ab) is even and

(σ(ab))(ijk)(σ(ab))−1 = σ(ab)(ijk)(ab)σ−1 = σ(ijk)σ−1 = (rst).

Lemma 5. Suppose n ≥ 5. If a normal subgroup N of An contains a 3-cycle, then N = An.

Proof. Let NCAn. If N contains a 3-cycle, normality implies N contains all of its conjugates
in An. This means N contains every 3-cycle, by Lemma 4. Lemma 3 then tells us that
N = An.

Theorem 2. If n 6= 4, then An is simple.

Proof. It suffices to assume that n ≥ 5. Let NCAn be nontrivial. We will show that N = An
by proving that N contains a 3-cycle and then appealing to Lemma 5. For convenience, set
In = {1, 2, . . . , n}. We will find the 3-cycle we need by considering the number of fixed points
of a nonidentity permutation in N .

For any σ ∈ Sn, we say that i ∈ In is a fixed point of σ if σ(i) = i. This is equivalent
to the statement that in the disjoint cycle decomposition of σ, i belongs to a 1-cycle. Now
suppose that σ ∈ N is nontrivial. We claim that unless σ is a 3-cycle, we can always find a
nontrivial element of N with more fixed points than σ.

There are two cases to consider. First, suppose that σ is a product of disjoint transpo-
sitions (at least two, since σ is nontrivial and even). Consider a pair (ij), (rs) of disjoint
transpositions occurring as cycles in σ. Since n ≥ 5, there is a t ∈ In \ {i, j, r, s}. Let
τ = (ij)(rt) and set σ′ = στστ−1. Since N is normal in An and τ is even, σ′ ∈ N . Write
σ = (ij)(rs)γ with γ disjoint from (ij) and (rs), that is i, j, r and s are all fixed points of γ.
Then γ commutes with (ij) and (rs), which commute with each other, so that

σ′ = ((ij)(rs)γ(ij)(rt))2 = ((rs)γ(rt))2.
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Since σ′(t) = r, σ′ is nontrivial. Furthermore, we see that σ′ fixes i, j and every fixed point
of σ, with the possible exception of t. In particular, σ′ has at least one more fixed point than
σ. This proves our claim in this case.

Now we suppose that σ has a cycle of length at least 3, but is not simply a 3-cycle. Write
σ = (ijk · · · )γ with γ fixing i, j, k, . . .. If σ has exactly n − 4 fixed points, it must be that
σ = (ijkr) is a 4-cycle. But 4-cycles are odd, so this is impossible. It follows that σ has at
most n− 5 fixed points. Then there must exist distinct r, s ∈ In \ {i, j, k} that are not fixed
by σ. Let τ = (krs). As in the preceding paragraph, let σ′ = σ−1τστ−1 ∈ N . Because τ
fixes i and j as well as every fixed point of σ, σ′ fixes i and every fixed point of σ. Thus, σ′

has one more fixed point than σ. Since σ′(j) = σ−1(r) 6= j, σ′ is nontrivial. This establishes
our claim.

We now complete the proof of the theorem. Let σ ∈ N be a nontrivial permutation with
the maximum number of fixed points. Then it cannot fall into either of the preceding classes.
Thus, σ is a 3-cycle, and N C An by Lemma 5.

Coupled with the fact that the index of An in Sn is as small as possible (without being
trivial), the simplicity of An prevents the existence of other normal subgroups of Sn. This is
an easy consequence of the following general group-theoretic lemmas.

Lemma 6. Let G be a group, N CG and H < G. Then H ∩N CH and [H : H ∩N ] divides
[G : N ].

Proof. Let H → G/N be the homomorphism given by the composition of inclusion and the
canonical epimorphism. Its kernel is H ∩N , making this a normal subgroup of H, and the
First Isomorphism Theorem implies H/(H ∩ N) is isomorphic to a subgroup of G/N . The
result follows at once.

Corollary 1. Let G be a group and H,N < G with [G : N ] = 2. Then H < N or
[H : H ∩N ] = 2.

Lemma 7. Let G be a group with a simple subgroup N of index 2. If H C G and H is
nontrivial, then N < H, or |H| = 2 and H < Z(G).

Proof. By Lemma 6, H ∩NCN . As N is simple, we must have H ∩N = {e} or H ∩N = N .
In the second case, N < H and we are done. In the first case, Corollary 1 implies that

2 = [H : H ∩N ] = [H : {e}] = |H|.

It is an easy exercise to show that a normal subgroup of order two must be contained in
Z(G), and this completes the proof.

Lemma 8. For n ≥ 3, Z(Sn) = {Id}.

Proof. Let σ ∈ Sn, σ 6= Id. If σ has a fixed point i, choose j 6= i not fixed by σ and set τ =
(ij). Then τστ−1 fixes j and hence τστ−1 6= σ. If σ has no fixed points, then σ(1) = i 6= 1.
Choose j 6∈ {1, i} (possible since n ≥ 3) and set τ = (ij). Then τστ−1(1) = j 6= i = σ(1)
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so that τστ−1 6= σ. In either case, we see that if σ 6= Id, then σ 6∈ Z(G), which proves the
result.

Theorem 3. If n 6= 4, the only nontrivial proper normal subgroup of Sn is An.

Proof. This now follows from Lemmas 7 and 8.

It is easy to see that the conclusion of Theorem 3 fails when n = 4. Indeed, we have
already observed that the nontrivial normal subgroup K of A4 is also normal in S4.

Another consequence of Theorem 2 concerns commutators and solvability. Recall that
given a group G its commutator subgroup is

G′ = 〈xyx−1y−1 |x, y ∈ G〉.

The elements [x, y] = xyx−1y−1 are called commutators. Any conjugate of a commutator is
also a commutator, which implies that G′ is a normal subgroup of G. It has the property
that for any H CG, G/H is abelian if and only if G′ < H. This is simply because [x, y]H =
[xH, yH] for all x, y ∈ G. Therefore G/G′ is the largest abelian quotient of G. Notice that
G′ is trivial if and only if G is abelian.

Theorem 4. For all n ≥ 2, S ′n = An.

Proof. By the First Isomorphism Theorem, the epimorphism δ yields an isomorphism Sn/An ∼=
{±1}. Since {±1} is abelian, S ′n < An. For n 6= 5, S ′n is nontrivial, normal in Sn, and An is
simple. It follows that S ′n = An.

To treat the case n = 4, we replace the final step in the argument above with a somewhat
more direct argument (which applies to any n ≥ 3). Given distinct i, j, k, we have

[(ij), (jk)] = (ij)(jk)(ij)(jk) = (ijk)2 = (ikj).

By Lemma 3, we conclude that An is generated by commutators, and hence An < S ′n. We
already know S ′n < An, so S ′n = An.

We can also determine the commutator subgroup of An.

Theorem 5. A′n is trivial for n ≤ 3, [A4 : A′4] = 3, and A′n = An for n ≥ 5.

Proof. The first case is trivial, since A2 and A3 are abelian. The last case is just as easy, since
when n ≥ 5, An is simple and nonabelian. To deal with A4, recall that in this case there is
a normal subgroup K of order 4. Hence A4/K has order 3, and is therefore abelian. This
in turn implies that A′4 < K. It’s easy to check that K has no nontrivial proper subgroups
that are normal in A4, which means that we must have A′4 = K.
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Our proof that A4 is not simple was perhaps somewhat unsatisfying. Without motivation,
we simply produced a nontrivial proper normal subgroup. Theorem 5 now explains where it
came from: it’s A′4. So the reason A4 fails to be simple is because its commutator subgroup
is proper! Notice that when n = 3 we also have [A3 : A′3] = 3. So one could restate Theorem
5 as follows: A′n = An, unless n = 3 or 4, when [An : A′n] = 3.

Our next result requires a definition. We say a finite group G is solvable if there is a
subnormal series

{e} = Gr CGr−1 CGr−2 C · · ·G1 CG0 = G,

where Gi/Gi+1 is abelian for all i (also called an abelian series). If one forms the derived
series for G, by setting G(1) = G′ and G(i+1) = (G(i))′, it is not difficult to show that G is
solvable if and only if there is an r so that G(r) = {e}.

Every abelian group is clearly solvable, as is Dn for every n (why?). The series {Id} C
K CA4 shows that A4 is solvable, too. A deep result of Feit-Thompson states that, in fact,
every group of odd order is solvable. On the other hand, the symmetric and alternating
groups provide examples of families of groups that are not solvable.

Theorem 6. For n ≥ 5, Sn and An are not solvable.

Proof. Since S ′n = An and A′n = An by Theorems 4 and 5, the derived series of Sn (and An)
terminates in an infinite string of An’s. Thus, Sn is not solvable.

We now provide two applications of the theorems we have proven about An so far. The
first application is to subgroups of index n. For any i ∈ In = {1, 2, . . . , n}, we begin by
setting

Hi = {σ ∈ Sn |σ(i) = i}.
It is straightforward to check that Hi < Sn for all i. Furthermore, if ι is any bijection
between In \ {i} and In−1, then σ 7→ ισι−1 yields an isomorphism κ : Hi → Sn−1. Thus
|Hi| = (n− 1)!, so that

[Sn : Hi] =
n!

(n− 1)!
= n.

Since there are odd permutations fixing i, Corollary 1 implies that [Hi : Hi ∩ An] = 2.
Therefore

[Sn : An][An : Hi ∩ An] = [Sn : Hi ∩ An] = [Sn : Hi][Hi : Hi ∩ An] = 2n,

and we find that
[An : Hi ∩ An] = n.

So by Lagrange’s Theorem we have

|Hi ∩ An| =
|An|

[An : Hi ∩ An]
=
n!/2

n
=

(n− 1)!

2
.

The subgroups Hi are not normal in Sn, because they are all conjugate to one another.
Indeed, if i 6= j, then conjugation by (ij) maps Hi onto Hj. If n ≥ 4, we can choose r, s
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distinct from i, j and instead conjugate by (ij)(rs) ∈ An to achieve the same result. This
then implies that Hi∩An is conjugate to Hj∩An in An, as well. We have the same conclusion
when n = 3, too, simply because Hi ∩ A3 is trivial for i ∈ I3.

One can show that κ carries transpositions to transpositions, and hence that κ(Hi ∩
An) < An−1. Since both groups have the same size, it must actually be the case that
κ(Hi ∩ An) = An−1. That is,

Hi ∩ An ∼= An−1. (6)

We will prove that this statement is true for any index n subgroup of An.

Now suppose H < An with [An : H] = n, and assume n 6= 4. We begin by reintroducing
a familiar construction. Recall that if we let An act on the left coset space An/H by left
translation, we get a homomorphism

T : An → Perm(An/H).

Because An transitively permutes An/H, T is not trivial. But An is simple, so if T isn’t
trivial it must be injective. Hence the image has index

n!

n!/2
= 2

in Perm(An/H). Let β : An/H → In be a bijection with β(H) = 1. Then γ 7→ βγβ−1

defines an isomorphism U : Perm(An/H)→ Sn. The image of α = U ◦ T has index 2 in Sn,
so by Theorem 3 it must be An. This means that α is an automorphism of An.

This is an extremely interesting construction! The elements of An are the even permuta-
tions of In. By taking a subgroup of this collection of permutations with a particular size (of
index n), and letting An act on the coset space, the simplicity of An yields a realization of
An as the even permutations on a different set through an entirely different mechanism. We
obtain two different “copies” of An, connected by an isomorphism. But there’s only one An,
up to the names of what’s being permuted, so we’ve managed to cook up an automorphism
of An. More on that later.

For any σ ∈ An, α(σ) = U(T (σ)) = βT (σ)β−1. From this it follows that α(σ) ∈ H1∩An if
and only if T (σ)(H) = H. But T (σ)(H) = σH, by definition. We find that α(σ) ∈ H1 ∩An
if and only if σ ∈ H. That is, α(H) = H1 ∩ An. Because α is an automorphism of An,
this proves that H ∼= H1 ∩ An. Referring back to (6), we see that we have succeeded in
establishing the following result.

Theorem 7. If n 6= 4, then every subgroup of An of index n is isomorphic to An−1.

As with any group, An has a number of inner automorphisms, which are those that are
given by conjugation by a fixed even permutation. And, as with any normal subgroup, conju-
gation by any element of Sn is also an automorphism of An (curiously, these automorphisms
don’t get a name). Does An have any other automorphisms? It turns out the answer is “no,”
unless n = 6. Although it’s not particularly difficult to prove the “no” part of this result, it
would take us too far afield. However, if we assume familiarity with the Sylow theorems, we
have the tools in hand to treat the n = 6 case.
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Let H be a simple group of order 60. Let P < H be a 5-Sylow subgroup. By the orbit-
stabilizer theorem, the number of conjugates of P is equal to the index of its normalizer,
which must divide [H : P ] = 12. But the number of conjugates of P is also equal to the
number of 5-Sylow subgroups of H, which is ≡ 1 (mod 5). Since P isn’t normal in H, it
must have more than 1 conjugate. The only way these conditions can simultaneously be
satisfied is if there are exactly six 5-Sylow subgroups of H.

The 5-Sylow subgroups of H are permuted by conjugation, and mapping each element of
H to the permutation it induces gives rise to a homomorphism

H ↪→ S6.

It is injective because H is simple and the action is nontrivial (H acts transitively on its
5-Sylow subgroups). We may therefore assume H < S6. Since H is simple, Corollary 1 tells
us that, in fact, H < A6. We find that

[A6 : H] =
6!/2

60
= 6,

so that by Theorem 4, H ∼= A5. Although it’s not the result we’re after, we pause to record
what we’ve now proven.

Theorem 8. A5 is the only simple group of order 60, up to isomorphism.

Because there is no 5-Sylow subgroup of H left inert by conjugation (it would be normal
in H, otherwise), when viewed as a subgroup of A6, H 6= Hi ∩ A6 for any i. Consider once
again the automorphism α of A6 arising from the action of A6 on A6/H. We have seen that
α(H) = H1 ∩ A6. This proves that α is not given by conjugation, because the only images
of H1 ∩A6 under conjugation are the subgroups Hi ∩A6, and H is not one of these. This is
what we were trying to prove.

Theorem 9. There exists an automorphism of A6 that is not given by conjugation in S6.

3 Remarks

Remark 1. The map π is an example of a group representation. Generally speaking, a
(finite dimensional) representation of a finite group G is a homomorphism π : G→ GLm(C),
for some m ∈ N. Roughly speaking, a representation gives us a way to concretely realize
elements of an abstract group as matrices. If π is faithful (representation-theoretic jargon for
injective), then G ∼= π(G), and we literally have a way to “represent” G as a matrix group.
Such a representation is easy to construct. If we let G act on itself by left translation, we
obtain a monomorphism G ↪→ Perm(G) ∼= S|G|. Composing this with the representation
constructed above (taking n = |G|), we obtain a faithful |G|-dimensional representation of
G called the regular representation. The true importance of the regular representation is not
that it is faithful, but that its “factors” can be used to build every representation of G. See
[1] or [2].

Remark 2. One can easily prove that An is a normal subgroup of Sn directly from the
definition of “even permutation,” without the need for any of the machinery of Section 1.
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Likewise, by definition, if σ, τ ∈ Sn are both odd, then στ−1 ∈ An, and σAn = τAn. Hence,
without any aid from δ, we can conclude there are at most two cosets of An in Sn: the coset
of the even permutations and the coset of the odd permutations. But doesn’t this mean,
automatically, that there are exactly two cosets? If so, the index equation (4), and hence
Theorem 1, follow immediately. Could we have missed something so obvious?

No, we didn’t miss anything. Although our elementary argument appears to have proven
that the even and odd permutations in Sn fall into two cosets of An, it was predicated on the
assumption that odd permutations exist. We actually didn’t prove that until we established
Theorem 1! Again by definition, the set of odd permutations is Sn \ An (not Bn!), which
could in principle be empty. But Bn isn’t empty, and Theorem 1 tells us that Sn \An = Bn,
so there are, indeed, odd permutations. So, one can view all of Section 1 simply as a proof
of (4).

Remark 3. To every finite group one can associate a unique sequence of simple groups, akin
to a prime factorization. Let G be a group. A composition series for G is a finite sequence
of subgroups Gi of G,

Gr = {e}CGr−1 CGr−2 C · · ·CG1 CG0 = G, (7)

so that Gi/Gi+1 is simple for all i. By the Correspondence Principle, this means that there
are no proper normal subgroups of Gi properly containing Gi+1. So, if Gi+1 < H CGi, then
H = Gi+1 or H = Gi. A composition series is therefore a maximal subnormal series for G:
there is no way to make it longer by inserting more subgroups.

This reformulation actually yields a quick proof that every finite group G has a com-
position series. Start by taking G1 to be the largest possible proper normal subgroup of
G (everything’s finite, so this is no problem). Then let G2 be the largest possible proper
normal subgroup of G1. Continue in this manner until Gr = {e} (since the Gi are finite and
shrinking, this must happen eventually). Done.

The somewhat amazing fact is that the composition factors Gi/Gi+1 of (7) are invariants
of G. No matter how we build a composition series for G (the algorithm of the preceding
paragraph is only one option), we will always get the same factor groups. This somewhat
vague statement is made precise in the well-known Jordan-Hölder Theorem.

Theorem 10 (Jordan, Hölder). Let G be a finite group and suppose

Gr = {e}CGr−1 CGr−2 C · · ·CG1 CG0 = G,

G′s = {e}CG′s−1 CG′s−2 C · · ·CG′1 CG′0 = G,

are both composition series for G. Then r = s and there is σ ∈ Sr so that2

Gσ(i)−1/Gσ(i)
∼= G′i−1/G

′
i

for all i.

The proof of the Jordan-Hölder Theorem is a somewhat elaborate application of the
fundamental Isomorphism Theorems, utilizing Zassenhaus’ Butterfly Lemma (mentioned

2We have shifted i down by 1 to facilitate the the application of σ.
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only because it has such a great name!) [1]. What the theorem tells us is that, in a certain
sense, the finite simple groups are the “building blocks” of every finite group.3 Given this
significant role, it is natural to ask if it is possible to describe all of the finite simple groups. It
is an astonishing fact that the answer is “yes.” After decades of work and tens of thousands
of pages of published mathematics, the classification of the finite simple groups was finally
completed in 2004. No small feat indeed!

The Classification Theorem states that, with 26 exceptions (the sporadic groups), the
finite simple groups fall into three infinite families. The first of these is the family of (cyclic)
groups of prime order. The second is the family of alternating groups! The exceptional case
when n = 4 can

Remark 4. The group-theoretic notion of solvability is intimately related to the solvability
of polynomial equations by radicals. Roughly speaking, a polynomial is solvable by radicals
if it is possible to express all of its roots in terms of arithmetic involving only elements in the
field of the coefficients and (perhaps nested) nth roots. For example, the quadratic formula
shows that every quadratic polynomial can be solved by radicals. And the polynomial
x8 − 10x4 + 1 is solvable by radicals since its roots are

ε1

√
ε2
√

2 + ε3
√

3, εi ∈ {±1}.

Although the expressions for the roots are more complicated than in the quadratic case,
every polynomial of degree 3 or 4 is also solvable by radicals. In other words, there is a
“cubic formula” and a “quartic formula.”

The quest to find similar results for polynomials of higher degree led ultimately to Abel’s
Theorem: there is no general solution by radicals for a polynomial of degree 5 or more. This
is somewhat striking, as it asserts the nonexistence of a certain type of formula. It turns
out, Abel’s Theorem is deeply connected to the theory of finite groups!

Galois was able to show that to any polynomial p one can associate a finite group G, a
certain subgroup of the permutations of its roots. This is the so-called Galois group of p.
The amazing fact is that p is solvable by radicals if and only if G is solvable. By showing
that G is not solvable, one can demonstrate that p cannot be solved by radicals!

Because the Galois group of the “generic” degree n polynomial is Sn, Galois theory tells
us that the general polynomial of degree n ≥ 5 cannot be solved by radicals. Put another
way, the quadratic, cubic and quartic formulae cannot be generalized to any higher degree.
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3Although this is the party line, there is no general way to reconstruct a group G from its composition factors. So although
the composition factors are indeed invariants of G, knowledge of them alone doesn’t usually tell you what G is.
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